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AbstrKt-Two extremum principles for the energy-release increment in an elastic-perfectly plastic body
subjected to prescribed change of the material properties are established. The principles, complementary to
each other, can be directly applied to numerical calculations of upper and lower bounds (or the
energy-release rate problems of fracture mechanics.

I. INTRODUCTION

AN EVALUATION of the energy-releav;: increment in a continuous body resulting from prescribed
change of the crack dimensions Of .,nape proved to be a basic problem in fracture mechanics. A
spectacular result obtained by Rice 11] and Eshelby[2], who expressed the energy-release rate in
terms of the surface integral, has oriented the main effort in this field to the search for more
general path independent integrals[3-7].

Whereas much attention has been devoted to the construction of path independent integrals
the literature is lacking in investigations into extremum principles corresponding to the
energy-release problem which seem to be of major importance for numerical calculations. An
exceptional attempt by Bui[S] to develop bounds for the path independent integral in an elastic
body is not satisfactory since the bounds for appropriate potentials are not sufficient to evaluate the
rate of energy released.

In the present work we use an original concept of Eshelby (see pp. 99-100 of [2]) who
derived a path independent integral for a flat crack modeling the crack propagation with the
translation of the function of elastic constants in the direction of the crack. The same result was
obtained later by Rice[l] with a different method.

Following the concept of Eshelby one can model the formation and/or propagation of a
crack of arbitrary shape using two comparison bodies subjected to identical boundary con
ditions. Namely, we assume that both functions representing the material properties: the free
energy function and the dissipation potential are, in general, not continuous in the region
occupied by the body and that they can attain the extreme values: zero free energy for every
elastic deformation and zero dissipation function for every increment of plastic deformation.
The limit values represent a void (or more precisely a zero-strength inclusion) in the body.

Hence general extri.:mum principles derived in the present paper can be in particular used to
evaluate the total energy released during the transition from the initial comparison body
containing a crack to the final comparison body containing crack of different size or shape.
Assuming that both functions representing the material properties are constant within the body
excluding the prescribed regions where they vanish we can model a wide range of cracks of
different shapes.

A numerical example of the application of the extremum principles to evaluate the total
energy released during flat crack propagation in an edge-crack specimen in tension by uniform
displacement bas been presented in paper[ll] which follows the present work. A general result
is obtained there for positive-volume void containing the flat crack. The energy bounds for the
flat crack are obtained as the limits for the partiCUlar case when the void shrinks to the flat
crack.

A practical significance of the extremum principles established in Sections 3 and 4 consists
in the fact that they make it possible to calculate upper bound and lower bound for the total
energy increment witb standard (for example finite element) methods of construction of the

tVisiting SCholar; Division of Applied Mechanics. Stanford University, Stanford. CA 94305, U.S.A.

767



768 P. RAFALSKI

kinematically admissible strain function and statically admissible stress function. The cal
culation can be performed for a wide class of problems including propagation of crack of
arbitrary shape. A unique feature of bounding the energy increment (whereas the principles
existing in the literature bound the energy) makes the principles a useful tool to investigate
crack problems.

It should be also noted that the basic inequalities expressed in the form of extremum
principles were obtained for the assumptions weaker than those commonly used in the
literature for the description of the elastic behavior of the body. Namely, we do not assume
neither continuity nor differentiability of the free energy function. Using the convex analysis
notation, already established in theory of plasticity we obtain a uniform mathematical descrip
tion of elastic and plastic constitutive laws. In the particular case, when the plastic effect is
neglected and the free energy function is differentiable with respect to the strain tensor we
arrive at the classical form of the elastic constitutive relations. Indeed, if the function is
differentiable then the subdifferential contains exactly one subgradient which is identified with
the gradient of the function.

The perfectly-plastic behavior of the body is here determined with a standard concept of
plastically admissible region (also called the elastic region) in the space of the stress tensors.
The classical inequalities relating the stress and the plastic strain increment are presented (6) in
terms of basic notions of convex analysis: the subdifferential and the subgradient. The
application of convex analysis in conjunction with the concept of statically admissible and
kinematically admissible functions leads directly to final results presented in the paper.

It follows from the above remarks that the problem formulated in the present paper is a
natural generalization of the energy-release problem considered in the literature in conjunction
with crack propagation. Indeed, the prescribed damage of the material can take the form of
2-dimensional crack, 3-dimensional void where material can not support any forces (zero
strength) or arbitrary region where the strength of material is changed.

2. FORMULATION OF THE PROBLEM

We consider an elastic-perfectly plastic body 0 occupying three-dimensional region V
bounded by sufficiently regular surface B. The boundary B is decomposed into the surface Bs,
where the tractions TB(x) are prescribed and the surface BK , where the displacements uB(x) are
prescribed.

Assuming that the plastic strain function EOP(X) in the body 0 is given one can determine the
total strain function EO(X) and the stress function (J'°(x) from the relations

(J'°(x) E aWo(Eo- EOP •x) in V (1)

° 1 ° ° and a~,j =0 in V (2)Ei j ='2(Ui ,j+ Uj,J

u~ = u~ on BK (3)

T~= a~nj = n on Bs (4)

where Wo(E, x) is the free energy function defined for all strain tensors E and all x from V and n
is the unit vector normal to the boundary B and taken as positive outwardly. Here it is assumed
that the free energy function is lower-semicontinuous [8, 9] and convex with respect to E and it
attains an absolute minimum equal to zero at E = O. Consequently aWo(Eo- E(lP, x) denotes the
subdifferential (see[S,9]) of Wo with respect to E at E = EO(X) - EOP(X) defined for every x from
V.

Suppose that the considered body changed the material properties while the prescribed
boundary conditions remained unchanged. The new material properties are represented by the
function W,(E, x) defined for every strain tensor E and every x from V, which will be referred to
as the free energy function of body 1. It is assumed that W,(E, x) is lower-semicontinuous and
convex with respect to E and it attains an absolute minimum equal to zero at E = O.
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It is also assumed that the plastic strain rate function is constant along the transition path
from body 0 to 1

(5)

where O:s A:s 1 is the parameter of the transition path and EAP(X) is the actual plastic strain
function corresponding to A. Now, introducing the dissipation function D(AE, x) which
represents plastic behavior of the body we can write the plastic /low law in the form

(6)

where O'.l.(x) is the actual stress function corresponding to the parameter A and iJD(E Ip - EOP, x)
is the subdifferential[8,9] of the dissipation function at AE = E Ip(X) - EOP(X). Here we assume
that D(AE, x) defined for all increments of the plastic strain tensor AE and for all x from V is
lower-semicontinuous and convex with respect to AE and it attains an absolute minimum equal
to zero at AE = O.

For the sake of simplicity we shall consider the dissipation function determined by the
plastically admissible region E(x) prescribed in the space of all stress tensors 0' for every x
from V

D(AE, x) = sup [AE • 0' - D*(O', x» in V
a

D*(O' x) = {O if 0' E~(x)
, :x: otherwise

(7)

(8)

where the dissipation potential D*(O', x) is (from the definition 7) the function polar to D(AE, x)

(see[8]) and the dot denotes the scalar product. The dissipation potential (8) expressed in terms
of the plastically admissible region in the space of stress determines plastic behavior of a large
class of elastic-perfectly plastic bodies. In particular the plastically admissible stress region
E(x) can be determined with Huber-von Mises or with Treska criterion of plasticity (see (10)).

The strain and stress functions in body I satisfy the plastic part of the constitutive law

as well as the kinematical and statical conditions

(9)

in V (10)

The problem consists in finding the energy release increment AE defined by

(11)

(12)

which represents the difference between the energy stored and dissipated in the body and the
energy supplied from outside during the transition from body 0 to body I.

3. MAXIMUM PRINCIPLE

We introduce the space K of all kinematically admissible functions of strain i(x), i.e. the
functions which can be derived from the displacement function u(x); iii = ~("j,j + "i';) in V.
satisfying the prescribed boundary condition "j = UjB on BK .
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Consequently we introduce the space $ of all statically admissible stress functions u(x)
which satisfy the equilibrium equation Ui;,; 0 in V and the prescribed boundary condition
Uijnj = Ti

B on Bs.
We shall also use the set P of all plastically admissible stress functions u(x), i.e. the

functions which satisfy D*(u, x) =0 in V.
It follows from the elastic part of the constitutive law (I) for body 0 that the integral

(14)

is non-negative for arbitrary strain function E(X). Similarly, taking into account the particular
form (8) of D*(u, x) we obtain from the plastic part of the constitutive law (6) that

G(AE, u) = Iv [D(AE, x) - AE . u] dV;;::: 0

for arbitrary function AE(X) provided that the function u(x) is plastically admissible.
It follows from the definition of the polar function [8] WT(u, x)

WT(u, x) = sup [E' U - WI(E, x)] in V
•

that the integral

is non-negative for arbitrary strain function E(X) and arbitrary stress function u(x).
The above inequalities in conjunction with the identity

(15)

(16)

(17)

AE =- J [Wo(i - EOP,x)- (i - EOP). U + WT(u, x)] dV +f (i - EI). (U(I u)dV
v v

+Io(i-EoP)+UJ(E'-E'P,u)+G(E'P EOP,U) (18)

obtained from (13) with the divergence theorem, lead directly to the maximum principle:

The function

(19)

defined for all kinematically admissible strain functions i(x) E K, all statically and plastically
admissible stress functions u(x) E ($ n P) and the prescribed initial plastic strain function
EOP(X) attains an absolute maximum equal to AE at i = EO and u =: u l

,

The proof follows from the fact that the second term of expression (8) vanishes for
arbitrary u from K and u from $ and the last three terms are non-negative.

It should be noted that in the considered case the functions EO(X), E'(X), E1p(X), uO(x), ul(x)
which satisfy the relations (1), (4), (6), (10), (11) and (12) are not, in general uniquely
determined.

4. MINIMUM PRINCIPLE

To establish the minimum principle we introduce the integral

n(O') =: J [W~«T, x) - W~(uo, x) - (0' - O'~ • (EO - EOP
)] dV

v
(20)
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which is non-negative for arbitrary stress function a(x) since the function aO(x) satisfies the
constitutive law (1) in body O. Here WW(a, x) denotes the function polar to Wo(E, x) (see 16).

Now, taking into 3;.'count that the functions aO(x), al(x), EO(X), EI(X), EIP(X) satisfy the
constitutive law (I), (f' (9), we obtain from (13)

boB =Iv [WI(i - EOP, x) - (i - EOP) • iT + WW(iT, x)) dV +Iv (Eo - i) . (a l
- iT) dV

- IW(iT) - V 1(i - EOP, al) - Iv D*(a', x) dV (21)

Hence the minimum principle takes the form:
The function

(22)

defined for all kinematically admissible strain functions i(x) E K, all statically admissible stress
functions iT(x) E S and the prescribed initial plastic strain function aOP(x) attains an absolute
minimum equal to boB at i = E

I
- flp +EOP and iT = aO.

The proof follows from the fact that the second term of expression (21) vanishes for
arbitrary i from K and iT from S and the last three terms are non-positive.
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